
DEFEATING POLYMORPHISM: BEYOND EMULATION STEPAN

40 VIRUS BULLETIN CONFERENCE OCTOBER 2005 ©2005 Virus Bulletin Ltd. No part of this reprint may be
reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

DEFEATING POLYMORPHISM:
BEYOND EMULATION

Adrian E. Stepan
Microsoft Corp., One Microsoft Way, Redmond,

WA 90852, USA

Tel +1 425 706 9498 • Fax +1 425 936 7329

ABSTRACT
The most common method of detecting malware relies on
signatures extracted from the malware body. Attempting to
defeat this method and evade detection, malware writers have
resorted to code obfuscation techniques, thus creating
polymorphic viruses.

There are several well-known methods of decrypting
polymorphic viruses, such as emulation, cryptanalysis (x-ray)
and dedicated decryption routines. Each of these methods has
some limitations: x-ray can handle only simple decryptions;
dedicated routines require significant development effort and
neither scales well with the number of detected viruses.
Emulation doesn’t have these weaknesses, but emulating code
is significantly slower than executing it on a real CPU.
Therefore a very complex polymorphic virus would take an
unreasonable length of time to emulate until it is decrypted.

This paper proposes a new method of dealing with
polymorphic malware. The method relies on disassembling the
analysed code dynamically and performing just-in-time
compilation targeted for the host CPU. The code obtained as a
result can be executed safely on the host CPU, with little
degradation in execution speed, compared to the original code.
This provides the same flexibility as emulation but
performance, in terms of speed, is dramatically improved.
Additionally, the method could be used for other purposes,
such as generic unpacking of packed executables, and
behaviour-based analysis of complex code.

1. DETECTING MALWARE, AN ONGOING
BATTLE
Malware has a long history of evolution. During the past two
decades, malware has evolved with regard to replication and
spreading mechanisms, as well as techniques used to prevent
analysis and/or detection. Such techniques include
anti-debugging, encryption, packing, entry point obscuring, etc.

One of the first methods used to detect malware relied on
signatures extracted from the malware body. Despite the
significant evolution of malware, using signatures is still the
most common detection method used today. However, there
are some things that have changed, such as the types of
signature data and the methods used to search for such
signatures. A modern AV engine may use lots of different types
of data extracted from the malware body:

• Patterns, with or without wildcards, also known as
‘strings’

• Checksums (CRC, MD5, SHA1)

• Behaviour patterns

• File geometry, execution flow geometry

• Statistic distribution of code instructions

Of course, any combination of the above could be used as a
malware signature, and the list is not exhaustive. In an attempt
to defeat detection by signatures, malware writers started to
use code obfuscation techniques, such as encryption. In the
beginning, viruses used fairly simple encryption schemes and
only the keys changed from one generation to another, while
the encryption algorithm remained constant; these are known
as oligomorphic viruses. Later, more sophisticated
polymorphic techniques were developed. Such viruses were
able to change both the encryption algorithm and the keys used
to encrypt themselves upon each replication; some were able
to generate multiple encryption layers.

It is still possible to detect a polymorphic virus using
signatures, but the virus body must be decrypted first. There
are several methods that are widely used in the AV Industry for
the purpose of decrypting polymorphic viruses: cryptanalysis
(also known as x-ray), dedicated decryption routines,
emulation, etc.

2. TECHNIQUES CURRENTLY USED TO
DEFEAT POLYMORPHISM
X-ray works by attempting to find the decryption key by using
the known decryption algorithm and a fragment of decrypted
code, which is part of the signature. For each key, an equation
is written, that expresses this key as a function of the
encrypted code, decrypted code and the other keys. Solving
the system will produce the correct set of keys required to
decrypt the virus. The method is fairly simple to implement
and has good performance for a single given decryption
algorithm. In some cases, it is also able to detect fragments of
the virus code, even if the entire virus is not present or is not
functional. However, the method does not scale well with the
number of detected viruses, because it needs to be run for each
different encryption algorithm. Also, it can only handle simple
algorithms, as the equation system becomes impossible to
solve for more complex ones. Its usefulness is very limited in
the case of viruses having multiple encryption layers.

Dedicated decryption routines can be developed to detect any
virus, and performance for any given virus is usually better
compared to the x-ray method. Unfortunately, writing such a
routine requires that the virus is analysed completely and the
developer understands completely all the possible variants of
encryption that the virus can generate. A thorough analysis of
the malware and then developing and testing a specific
detection routine could take a lot of work and a lot of time to
accomplish. Therefore, the response time when using this
solution can often be quite long. Additionally, this method
does not scale well with the number of detected viruses, as
each file must be checked with all the available routines.

Executing the decryption code from the virus itself would
decrypt the virus body with excellent speed performance, but
this is not a very good idea, for a number of reasons:

• There isn’t any simple, reliable way of stopping the
execution when the decryption is complete; therefore the
virus could replicate, do some damage to the host system
and re-encrypt itself and without being detected

• The virus could do some damage even during decryption

• The code could be buggy and crash or enter an infinite
loop

• The virus code could be written for a different hardware/
software platform, so it might not run at all

DEFEATING POLYMORPHISM: BEYOND EMULATION STEPAN

41VIRUS BULLETIN CONFERENCE OCTOBER 2005 ©2005 Virus Bulletin Ltd. No part of this reprint may be
reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

Of course, the code could be executed in a controlled
environment, such as a virtual machine, but a general-purpose
virtual machine is very complex software. Including one in an
AV product would require software emulation for the full
system environment, from device drivers to system APIs,
which is simply too much overhead.

None of the methods described above is able to detect new
malware in a generic way. Their purpose is to just decrypt
polymorphic viruses, so that signature-based detection can be
used. While it’s possible to develop dedicated routines that are
able to detect entire malware families (and often new variants
as well), writing a routine that is able to analyse an arbitrary
program and determine malicious behaviour is not feasible.

Use of emulation solves all the above problems. Potential
malicious code runs in a controlled, simulated environment.
Hardware resources such as CPU registers are modelled using
software data structures. The behaviour of each instruction is
reproduced by a set of software routines designed to update
the corresponding data structures, in the same way the
instructions would update the hardware resources when
executed on a real CPU. Each instruction is first decoded, in
order to find the instruction type, length, operands that need
to be updated, etc. After this, the appropriate emulation
routine is called to update the data structure describing
hardware resources. The address of the next instruction is
obtained either as a result of instruction decoding or
computed by the emulation routine (in the case of branch
instructions).

The emulation process usually starts at the program’s entry
point and instructions are emulated sequentially until a
malware signature is found, the emulator is able to conclude
that the program is not malicious or emulator resources are
exhausted. In addition, the emulator has to decide when to
scan for malware signatures and what data to scan, call the
scanner, collect and analyse data obtained during emulation
for behaviour-based heuristic detection or for the purpose of
deciding that the program is not malicious.

Emulation can be used to decrypt any encrypted code,
regardless of the complexity of the encryption algorithm,
given that the decryption code is available and the emulator is
provided with enough resources to complete the decryption.
Providing resources such as memory is not very difficult, as
the requirement is comparable with that of the analysed
program (the overhead caused by the emulator’s internal data
structures is typically negligible). However, emulating code is
significantly slower than running the code on a CPU that can
execute it natively. This limitation is impossible to overcome,
because for each emulated instruction an emulator has to
execute hundreds of instructions to decode it, update the
internal data structures, decide if scanning is needed, decide if
more instructions should be emulated or not, find the address
of the next instruction, etc. Typically, emulation is hundreds
of times slower than execution.

An emulator in an AV engine is required to analyse any given
file in a finite time, during which it must determine if the file
is malicious or not. When the maximum allowed time for a
file has elapsed and no malware signatures have been
detected, the emulator must stop the analysis and conclude
the given file is not malicious. It is always possible that the
maximum time limit was set to be too short for a particular
malware to be detected. On the other hand, increasing this
time limit will deteriorate the emulator’s average speed. This

happens because there will always be a small percentage of
clean files for which the emulator will never be able to
determine that they are clean, no matter how much it will
analyse. Of course, the time limit can be adjusted
dynamically: the emulator could increase it if suspicious
behaviour is detected or decrease it otherwise. However, there
are instances in which legitimate programs are encrypted with
the same encryption engines as certain viruses, or viruses use
code that looks benign, etc. Even with adjusting the time limit
dynamically, there will have to be a hard limit, to avoid
having the emulator analysing a file in an infinite loop. This
means that it will always be possible for a virus writer to
determine what this limit is for a particular AV engine and
write a virus that would need to be emulated longer than that
in order to be detected. Viruses such as Win32://Coke,
KME-based, etc. would take unreasonably long to emulate,
but they would still decrypt and replicate on the real machine
in a reasonable time, because native execution is typically
hundreds of times faster than emulation.

3. DYNAMIC TRANSLATION

The ‘dynamic translation’ method described below offers the
same flexibility as emulation, while improving performance
significantly. It relies on disassembling the code to be
analysed dynamically and translating it into functionally
equivalent code that is safe to execute on the host machine.
The executable code obtained as a result of the translation is
persisted; if the code is executed inside a loop, the persisted
code can, in most cases, be executed directly, without
requiring retranslation.

Disassembling and translating an instruction requires a
computational effort that is comparable to emulating an
instruction; executing the obtained code is typically slower
than executing the original instruction, but much less so than
emulating the instruction. If a code sequence is executed in a
loop, the code will be translated and executed at the first loop
iteration, and for all subsequent iterations the persisted code
obtained at the first iteration will be executed. Thus, the
method eliminates redundant analysis of repeating code
sequences. Compared to emulation, the time required to
complete the first loop iteration would be approximately the
same, while the subsequent iterations will take considerably
less time.

3.1. Partitioning the code into blocks

One of the problems that the implementation of the DT
engine has to address is determining whether translated code
is available for any given instruction, and if so, locating the
corresponding code. One possible solution is maintaining a
table with virtual addresses of translated instructions and
addresses of corresponding executable code. However,
searching a virtual address in this table for each processed
instruction is computationally very expensive, negating the
speed advantage of executing translated code. A much more
efficient way of solving this issue would be to partition the
original code into blocks of instructions and only store a table
entry for each block. This way, the table would have
significantly fewer entries and searching would need to be
performed for each block, as opposed to each instruction.
Dividing the original code into blocks cannot be done in an
arbitrary way; blocks need to have some specific properties,
as described below, that limit the size of each block. On the

DEFEATING POLYMORPHISM: BEYOND EMULATION STEPAN

42 VIRUS BULLETIN CONFERENCE OCTOBER 2005 ©2005 Virus Bulletin Ltd. No part of this reprint may be
reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

other hand, the bigger the blocks are, the more efficient the
storage and searching will be.

For the rest of this paper, a ‘basic block’ (BB) will be defined
as a contiguous block of code having a single entry point at
the beginning of the block and a single exit point at the end of
the block. If the code within such a block is executed via a
call instruction to the beginning address of the block, all the
instructions in the block will be executed. A single instruction
is needed, at the end of the block, to return control to the
caller. As a consequence, any basic block of original code will
contain at most one jump instruction. Basic blocks that don’t
contain any jump instructions are valid, but suboptimal. They
could be created as a result of splitting different blocks or for
other practical reasons such as the DT engine having
insufficient resources to translate a bigger block, etc. Such
blocks don’t need to be treated differently, as we can consider
that they end with a virtual unconditional jump to the
following instruction.

Each discovered BB will be described by a set of properties,
such as:

• Block boundaries; the address of the first instruction in
the BB and the address immediately following the last
instruction in the BB will be used to delimit the block;
these are linear addresses in the address space of the
original code.

• Executable code obtained as a result of translating the
original code in the block.

• Miscellaneous flags, indicating if the block was
translated or not, if it was scanned for malware
signatures, if the block has any known successor
blocks, etc.

Discovering and delimiting basic blocks is a dynamic process,
meaning that new blocks may be discovered or existing
blocks could be modified as a result of processing previously
discovered blocks. After translating a block and executing the
resulted code, the beginning address of the next block to be
processed will be the destination address of the jump
instruction at the end of the block that was just executed.
Let’s call this address the ‘current address’. The next block to
be analysed has to be a BB starting at the current address.
This block will be determined by searching the current
address in the list of block address ranges for previously
discovered blocks; the following situations are possible:

i An existing BB is found that begins at the current
address; this becomes the current BB and will be
processed in the same way as the previous BB.

ii The current address is found inside the address range of
an existing BB. According to our definition, a BB must
have a single entry point; therefore this block must be
split. The existing block will be modified such as its
address range will end at the current address and a new
BB will be created, starting at the current address. If the
split block was already translated, the existing code will
not be truncated, but the code starting at the current
address will be retranslated for the newly created block.

iii The current address is not found inside the address
range of any existing BB. In this case, a new BB will be
created, starting at the current address.

If the previous BB ended with an immediate jump instruction
– for which the destination address is constant – this means

that the current BB will always be a successor of the previous
BB. This information can be stored, in order to avoid
unnecessary searching in the BB address ranges in case these
blocks are inside a loop. If the previous jump instruction was
unconditional, the current BB is the only possible successor;
in the case of a conditional jump instruction, there can be at
most two different successor blocks. If a block ends with a
computed jump instruction, the destination address could be
different each time the block is executed, so in this case
determining the successor block requires searching, as
described above, in the list of existing block address ranges. A
list of successor blocks determined at previous iterations
could be also stored and used to speed up searching, in case
the number of different possible successor blocks is
reasonably small.

Delimiting the original code into basic blocks as described
above and maintaining a data structure describing the blocks
and the relations between them has several advantages:

• If several blocks are executed inside a loop, searching for
a successor block needs to be done only once for each
successor; after all the successors of a particular block
have been determined, there is no need to search for a
successor of that block at any subsequent loop iteration.

• The list of beginning addresses for the discovered blocks
can be used as a list of ‘entry points’ to scan for malware
signatures; each discovered BB needs to be scanned
only once.

• It provides data for applying dynamic code
optimizations. Since optimizing code is computationally
expensive, blocks that are executed more frequently are
better candidates for optimizations.

3.2. Scanning for malware signatures

After the virus body has been decrypted, the virus can be
detected by finding a signature in the decrypted body. If the
virus is not metamorphic, any fragment of the virus body
could be used as a signature, providing that it is specific
enough to provide accurate identification and not cause false
positives. Finding a signature in the decrypted virus body
raises the problem of deciding when and where to search for
signatures; the search method must guarantee that no
signature could go undetected, but it also has to be as fast as
possible. In the case of a polymorphic virus, the scanner can
guarantee detection only if at least one signature search is
performed after the virus body has been completely
decrypted, but before it starts encrypting itself again.

Given an arbitrary virus, it is extremely difficult to determine
the exact moment when the above condition is met during the
analysis. This is true for both emulation and the dynamic
translation methods. One possible approach would be to
detect decryptor loops and scan the code decrypted by each
such loop at the end of the loop. However, this is not very
easy to implement, as determining decryptor loops, loop exit
criteria and range of decrypted code are fairly complex tasks.
Also, this method does not guarantee a minimum number of
scans; if the virus has multiple decryption layers, or the same
layer is executed multiple times (i.e. in brute-force
decryption), the code will be scanned redundantly for each
decryption layer. There are also polymorphic viruses for
which the entire decrypted body cannot be found in memory
at any time (i.e. Dark_Paranoid). In such cases, an instruction

DEFEATING POLYMORPHISM: BEYOND EMULATION STEPAN

43VIRUS BULLETIN CONFERENCE OCTOBER 2005 ©2005 Virus Bulletin Ltd. No part of this reprint may be
reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

or a small code sequence is decrypted, executed and then
immediately encrypted again. For these viruses, the decrypted
body can be obtained by logging each instruction the first
time it is encountered and sorting the logged instructions by
address. Scanning the resultant log guarantees that the entire
virus code will be scanned for signatures, and no redundant
search operations are performed, because no code sequence
will be scanned more than once.

It is generally preferable to extract signatures from the
constant part of a polymorphic virus and not from the
decryptor code; therefore the code that is used for decryption
doesn’t necessarily need to be scanned. In practice, however,
it is typically more computationally expensive to identify the
code used for decryption precisely and exclude it from
scanning, than it is to scan it.

Another difficulty comes from the fact that one cannot predict
the location in the decrypted code where a signature might be
present. Therefore, scanning a chunk of code without any
knowledge about the code structure requires searching for
signatures starting from up to M - N offsets in the given code
chunk, where N is the size of the chunk in bytes and M is the
size of the shortest signature searched.

Dividing the code into basic blocks, as described in section
3.1., provides a means to scan the entire code that was
analysed, in a reliable way and with minimum number of
signature searches. Having the data structure describing the
basic blocks, it is easy to determine, for any particular block,
whether it is the first time we’re analysing it (in which case
we also need to scan it) or whether we have analysed it before
and no scanning is needed. As part of maintaining the BB data
structure, we are also required to detect when any block that
has previously been analysed is being overwritten (because if
this happened, the block would need to be retranslated). A
block can be scanned at any time after it was discovered and
before it is overwritten, and it needs to be scanned only once.
If we choose, for instance, to use only signatures starting at
the BB boundary, the maximum number of scans needed will
be the number of unique basic blocks in the code. Of course, a
signature could span multiple blocks, in which case all of
these blocks need to be discovered and decrypted, so that the
signature can be detected. If some of the blocks are
overwritten before a signature is detected, the code must be
logged as described above.

3.3. Translating code

Given an arbitrary program code to be analysed by an AV
engine not only needs the code to be considered unsafe, but it
could also be the case that the code is compiled to run on a
different hardware platform than the AV engine. Even if the
code to be analysed executes natively on the same CPU as the
AV engine, it might need to run in a different CPU mode (i.e.
x86 real mode vs. protected mode), have different memory
mapping mode, execute under a different operating system,
etc. Therefore, even if the code was safe or we could
somehow make sure the host machine cannot be damaged, it
still wouldn’t be possible to execute correctly any arbitrary
part of the given code, from the AV engine process. It is,
however, possible to translate the given code into another
code sequence that is functionally equivalent with the original
one and that can be safely and correctly executed on the host
machine. In our case, the host CPU will be used to execute
the translated code directly, while in the case of emulation a

virtual CPU is used instead of the real one. Other hardware
resources (I/O ports, IRQ controllers, disk drives, etc.) are
typically virtualized to protect the host machine from any
damage.

There are multiple ways in which a code translation that
meets the above criteria can be achieved:

i Translating directly from the original code to target
code: each original instruction will be decoded and then
an equivalent instruction or instruction sequence will be
generated for the target code. This is the simplest
translation method to implement, for any source and
target binary languages.

ii Translating using an intermediate language (IL): each
original instruction will first be translated into an
intermediate code sequence and then the intermediate
code will be translated to target native code. This
method is preferable when we have multiple sources (S)
and multiple target (T) languages. With direct
translation, we would need in this case S * T translators,
while using an intermediate language we only need
S + T translators (S translators from a source language
to IL and T translators from IL to a target language).
There are other advantages as well, such as the
possibility to perform code optimizations using the IL
form. The IL should be platform-independent, but could
be designed in a way that favours translation speed for
some particular translators (those that are more
frequently used). As a drawback, the IL would need to
support all the possible operators, operand types and
combinations of these, from all the source languages,
raising its degree of complexity. This could prove to be
a problem, because translating to or from languages
with a reduced instruction set is generally faster, per
translated instruction, than in the case of complex
languages.

iii Combining the above methods could be achieved in a
way that preserves the advantages of both, without any
of their disadvantages. Most instructions could be
translated using a fairly simple intermediate language,
while the most exotic and complex ones, that would
also require a complex IL, will be translated directly.

Typically, the code obtained as a result of translation will not
be as efficient as the original code. This may happen for
various reasons: some instructions or operand encodings from
the source language might not have a 1:1 correspondence in
either the IL or the target language, some hardware resources
used in the source language need to be preserved or not used
at all in the target language because of specific restrictions,
memory mapping has to be virtualized because the source and
target languages might use different mappings, etc.

It is possible to perform some optimizations at basic block
level, at translation time, to improve the efficiency of the
translated code. If the translation uses an IL, the best idea
would be to perform the optimizations on the IL, because the
algorithms involved will only need to support this language,
as opposed to all the source and target languages. The IL
could also be designed to facilitate optimizations such as
define-usage chains, copy propagation, etc., while the other
languages might not be very suitable for performing such
optimizations. Also, the IL may be used to pass translation
‘hints’ from the source translator to the target translator.

DEFEATING POLYMORPHISM: BEYOND EMULATION STEPAN

44 VIRUS BULLETIN CONFERENCE OCTOBER 2005 ©2005 Virus Bulletin Ltd. No part of this reprint may be
reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

If the analysed code is linear, the code will be translated once
and executed once. As the execution time is negligible
compared to translation time, in this case translation would
account for most of the analysis time. For clean files that
don’t unpack or decrypt themselves and don’t have any
suspicious behaviour, there is usually no need to analyse lots
of looping code; in this case, the translators must be
optimized for speed. On the other hand, for polymorphic
malware and occasional clean files that contain unpacking or
decryption code, most time will be spent analysing loops and
executing code that is already translated. In this case, the
speed of the code generated by the translators is more
important than the translation speed. As improving the
efficiency of the translated code is done at the cost of
translation speed, a compromise between these two must be
obtained.

An example of code translation is given in Appendix A.

3.4. DT execution flow

For each file that needs to be scanned for malware, analysis
consists of sequentially identifying and processing of basic
blocks, as defined in section 3.1. At the beginning of the
analysis, the current address is initialized to the entry point of
the program to be scanned. After each BB is processed, the
current address is updated to the destination address of the
jump instruction at the end of this block. The analysis
continues with the BB starting at the new current address,
until a malware signature is detected or the program is
determined to be clean.

In a simplified description, after each BB is analysed, the
following processing algorithm has to be performed for the
next one:

1 Look in the data structure describing relationships
between blocks for a known successor of the last
analysed block; if a known successor exists, make this
block the current BB and continue from step 6.

2 Search the block address range table for a previously
discovered block starting at the current address. If such
a block is found, make it the current BB and continue
from step 5.

3 If the current address is found inside the address range
of an existing BB, split this BB to end at the current
address. Create a new BB starting at the current address,
make the new block the current BB and continue from
step 5.

4 If no existing block was found, that either starts or
includes the current address in its address range, create
a new BB starting at the current address; this will be the
current BB.

5 Update the data structure describing relationships
between blocks: store the information that the current
BB is a successor of the previously processed BB.

6 If the current BB was not scanned for signatures, scan
for signatures starting at the current address. If a
signature is found, stop the analysis and report the file
as malicious, otherwise mark the block as scanned.

7 If the current BB is already translated and the code was
not overwritten since last translation, continue from
step 10.

8 If the current BB was previously translated but the
original code was overwritten, discard the translated
code, as it is no longer valid.

9 Translate the current BB.

10 Prepare for executing the translated code for the current
BB: save hardware resources that are used by both this
algorithm and the translated code and need to be
preserved, such as CPU registers, etc., depending on
implementation.

11 Execute the translated code for the current BB via a call
instruction; after execution is complete, control will be
returned by the executed code to the caller.

12 Restore resources saved at step 10.

13 Handle any errors that might have happened during
execution, decide whether to continue analysing the
next block or stop.

During execution, the translated code has to check, before
each write to memory operation, whether an existing block
would be overwritten by the data being written. The checking
may be skipped only if it can be determined, at translation
time, that this particular write operation could never overwrite
an existing block. If one or more blocks are overwritten, the
corresponding translated code will be marked as ‘dirty’,
meaning that it will be discarded at step 8, when those blocks
will be processed again. If one of the blocks that were
overwritten is the current BB and code beyond the current
execution point was overwritten, the execution must not be
allowed to continue to the end of the current BB, as this
would mean executing code that is no longer valid. In this
case, the write operation is allowed to happen and then
execution is allowed to continue until the entire translated
code sequence corresponding to the current original
instruction is executed. This is done because execution cannot
be interrupted in the middle of the code sequence for an
original instruction, otherwise resuming the execution would
not be possible. After all, overwritten blocks are marked as
dirty, execution is interrupted and control is returned to the
caller, with the current address set to the address where
execution was interrupted.

Handling of exceptions such as division by 0, page fault, etc.
is done in a similar way: execution is interrupted at the
address of the instruction that generated the exception; if an
exception handler is present, execution may continue with the
exception handler code. Information is passed to the
exception handler, enabling it to resume execution at the point
where it was interrupted.

Obtaining the address of the original instruction
corresponding to a given instruction in the translating code
requires some computational effort. For the original code, the
real CPU keeps an instruction pointer register, updating it
after each instruction is executed. Reproducing this behaviour
in the translated code would mean generating and executing
code for an extra

<add instruction_pointer, instruction_code_size>

operation, for each translated instruction. For simple
arithmetic instructions, this would mean doubling the
translated code size and execution time, which is
unacceptable. Therefore, computing the value of the current
instruction pointer will only be done when needed, if an
exception happens or the current block is being overwritten.

DEFEATING POLYMORPHISM: BEYOND EMULATION STEPAN

45VIRUS BULLETIN CONFERENCE OCTOBER 2005 ©2005 Virus Bulletin Ltd. No part of this reprint may be
reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

For this purpose, a table is used, that relates offsets of
instructions within the current BB to addresses of
corresponding instructions, in the original code.

Special care has to be taken when calling high-level language
compiled functions from the translated code. CPU registers
that might be used by the compiler in global optimizations
must be saved at step 10 and restored before calling a
high-level language function, in case they were changed by
the translated code. The stack pointer and frames must also be
preserved. The translated code must also save and restore any
registers computed before the high-level language function is
called, whose values are still needed after the function returns.

3.5. Environment

In order to obtain a correct behaviour while analysing
programs, the DT engine must provide access to various
hardware devices (disk drives, keyboard, mouse, network
interface, video card, real-time clock, etc.), as well as
software resources, such as BIOS data structures and routines
and operating system APIs. If the code provided as input to
the DT engine could be malicious, most of these resources
need to be virtualized. This requires a lot of development
effort, given the large number of devices and system APIs that
need to be supported. However, virtualizing the system
environment for a dynamic translation engine is done in
almost the same way as in the case of an emulator, so code
reusing is possible if an emulator is available.

Accessing virtualized devices, as opposed to real ones,
offers improved speed performance. A virtual device is in
fact a data structure in memory, which can be accessed much
faster than a disk drive, for instance. Often there’s no need to
fully implement all the functionality of a device, because no
existing malware would require it. Therefore, a virtual device
will be less complex than a real one, making it even faster
in operation.

Real devices may be used in a few cases – for instance, the
current time could be obtained by using the real-time clock.
However, this may cause the analysed code to behave
incorrectly. As the code actually runs slower inside the DT
engine than it would run natively, time inside the DT engine
should also pass proportionally slower. Otherwise, it would be
possible for the analysed code to determine, based on this
inconsistency, that it’s running in a virtual environment. This
is used by malware as an anti-emulation technique.

Some malware would function correctly only if the
environment is configured in a particular way. For instance,
they might require a specific OS version, work only on a
certain file system type, check for the presence of a specific
file in a known place or work only within a certain calendar
date range, etc. In these cases, it is difficult to configure the
environment so that the code will run correctly, as different
malware may have different conflicting requirements.

4. DEVELOPING FURTHER APPLICATIONS
Decrypting code in order to provide signature-based detection
for polymorphic executable file infectors is just one possible
application of dynamic translation. The code to be analysed
doesn’t need to be a CPU instruction code, it could also be a
platform-independent byte code, such as MSIL byte code or a
script. Translating from a non-binary language to native
executable code for the host CPU can be done in a similar

fashion as translating from a binary language. Using an
intermediate language might be more suitable for translating
from a non-binary language, because it could provide support
for variable number of operands and operand allocation,
which are required by virtually all script languages.

Using DT to analyse scripts, however, has to deal with some
specifics. For instance, a script might not be able to modify
itself while it is being interpreted, but it could generate other
script files dynamically and call the interpreter to run these.
In this case, each particular file can be translated statically,
but the analysis is still a dynamic process, because not all of
the component files are available at the beginning of the
analysis. Providing an environment for analysing scripts is
more difficult than in the case of executable files. Some of
the major challenges are accurately reproducing the
behaviour of the script interpreter and of OS commands and
utilities that might be called from the script. Different
versions of operating system or script interpreter might
behave differently.

Dynamic translation can also be used to translate malware
detection routines from a platform-independent byte code into
executable code for the host CPU. This way, an AV engine can
easily be updated with new detection capabilities, without the
need to actually change the engine code. The benefits
provided are smaller engine code, smaller (and faster) updates
and less testing effort required for the new routines. The new
detection routines will be sent as ‘data’, the same way as
signature/pattern database updates. They will be loaded and
translated to native code when the engine is loaded in
memory and then executed, as needed, with little speed
penalty compared to native code generated by a compiler.

The approach used to translate such routines will be slightly
different from the one used to translate files that are scanned
for malware, because in this case it is already known that the
detection routine code is not malicious. This allows the use of
a real environment as opposed to an emulated one. Also, there
is no need to scan any of the translated code and there is no
need to check for overwritten blocks, because the code
doesn’t decrypt or otherwise modify itself. All the successors
for all basic blocks can be determined when the engine is
loaded, which means that we don’t have to search for any
successor block at execution time. For these reasons, the
translated code obtained for detection routines will be a lot
more efficient than the code typically obtained by translating
files for the purpose of scanning.

In the case of packed executable malware, unpacking is
typically needed before a signature can be detected. Using
signatures extracted from packed code is not always practical,
even for non-polymorphic malware. Some strings or other
data might change inside the binary, upon each replication,
causing the packed file to change in such a way that the
signature won’t match any more. Detection based on
packed code is not possible if the packer is polymorphic.
Heuristic or generic detection can be achieved only by using
unpacked code.

Writing unpacking routines for all the packers publicly
available takes a lot of development and test effort. In some
cases, writing an unpacker routine would require reverse
engineering the packer and there might be some legal
restrictions preventing this. In the absence of a dedicated
unpacking routine, a packed executable could be emulated
until the unpacked code is obtained. However, unpacking with

DEFEATING POLYMORPHISM: BEYOND EMULATION STEPAN

46 VIRUS BULLETIN CONFERENCE OCTOBER 2005 ©2005 Virus Bulletin Ltd. No part of this reprint may be
reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

Original code Intermediate language Translated code Comments

movzx edx, w[ebp+offset_reg_BX] The memory mapper receives the
movzx eax, w[ebp+offset_reg_DS] virtual address in edx and returns the

L_decrypt: mov -, d[(reg.DS<<4)+reg.BX], reg.EAX shl eax, 4 real address in eax
mov eax, [bx] add edx, eax

call [ebp+offset_memory_mapper]
mov ecx, [eax]
mov [ebp+offset_reg_EAX], ecx

add ax, 1234h add reg.AX, 1234h, reg.AX lea eax, [ebp+offset_reg_AX] Possible optimization: add
add w[eax], 1234h w[ebp+offset_reg_AX], 1234h

mov eax, [ebp+offset_reg_AH] The layout of the Flags register
xor reg.AL, reg.AH, reg.AL xor [ebp+offset_reg_AL], al image in memory may be different

xor al, ah Saveflags reg.Flags lahf than the actual layout of the native
seto al Flags register, for speed reasons
mov [ebp+offset_reg_Flags], ax

lea eax, [ebp+offset_reg_DX] Possible optimization: movzx ecx,
mov dx, ax mov -, reg.AX, reg.DX movzx ecx, w[ebp+offset_reg_AX] w[ebp+offset_reg_AX] mov

mov w[eax], cx w[ebp+offset_reg_DX], cx

shr eax, 16 shr reg.EAX, 10h, reg.EAX lea eax, [ebp+offset_reg_EAX] Possible optimization: shr
shr d[eax], 10h d[ebp+offset_reg_EAX],10h Flags

don’t need to be stored, because they
will be overwritten by the next
instruction.

mov cl, [ebp+offset_reg_CL]
ror reg.AX, reg.CL, reg.AX ror w[ebp+offset_reg_AX], cl

ror ax, cl Saveflags reg.Flags lahf
seto al
mov [ebp+offset_reg_Flags], ax
movzx edx, w[ebp+offset_reg_BX]
movzx eax, w[ebp+offset_reg_DS]

mov -, reg.AX, shl eax, 4
mov [bx], ax w[(reg.DS<<4)+reg.BX] add edx, eax

call [ebp+offset_memory_mapper]
mov cx, [ebp+offset_reg_AX]
mov [eax], cx

mov edx, 2 The virtual address could be obtained
add dx, [ebp+offset_reg_BX] by adding 2 to the virtual address
movzx eax, w[ebp+offset_reg_DS] computed for the previous

mov -, reg.DX, shl eax, 4 instruction. However, implementing
mov [bx+2],dx w[(reg.DS<<4)+reg.BX+2] add edx, eax such optimizations in a generic way

call [ebp+offset_memory_mapper] is computationally expensive.
mov cx, [ebp+offset_reg_DX]
mov [eax], cx

an emulator could be very slow, especially for large packed
files that would typically require emulating several millions of
instructions. Using dynamic translation, a file could be
unpacked significantly faster, compared to emulation,
providing detection for malware packed with new packers,
with reasonable speed performance, before a dedicated
routine is developed. In some cases, the generic unpacking
using DT could prove fast enough that dedicated routines
won’t even be needed.

APPENDIX A
The table below shows an example of translation of a 16-bit
x86 code sequence sample to 32-bit x86 target code, as
generated by the prototype implementation of the Dynamic
Translation method.

DEFEATING POLYMORPHISM: BEYOND EMULATION STEPAN

47VIRUS BULLETIN CONFERENCE OCTOBER 2005 ©2005 Virus Bulletin Ltd. No part of this reprint may be
reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

Original code Intermediate language Translated code Comments

mov ax, [ebp+ offset_reg_Flags] The previous ‘mov’ instructions in
add al, 7Fh the original code do not affect CF,

Loadflags reg.Flags sahf but the corresponding translated code
inc bx inc reg.BX, -, reg.BX lea eax, [ebp+offset_reg_BX] sequences do so. The IL only allows

Saveflags reg.Flags inc w[eax] saving all flags and not individual
lahf ones, so we must load the native
seto al flags prior to executing the ‘inc’
mov [ebp+ offset_reg_Flags], ax instruction that doesn’t affect CF, in

order to preserve the correct value of
the CF flag.

lea eax, [ebp+offset_reg_IP] The code sequence for a jump
mov ebx, addr_L_decrypt instruction must update the
movzx ecx, w[ebp+offset_reg_CS] instruction pointer register, compute
shl ecx, 4 the virtual address of the next
sub ebx, ecx instruction and provide the DT
mov [eax], bx engine information about the jump
lea eax, [ebp+offset_reg_CX] instruction, such as type of jump and
dec w[eax] whether the jump was taken or not. It
lea eax, [ebp+offset_reg_T32] is possible to replace ‘jmp L_return’

sub addr_L_endloop, mov ebx, eax with a ‘ret’ instruction, but this would
(reg.CS<<4), reg.IP mov eax, 0 negate the possibility of calling a

setz al debug trace function from the
loop L_decrypt dec reg.CX, -, reg.CX mov [ebx], eax generated code after each instruction
L_endloop: setz -, -, reg.T32 mov ecx, [ebp+offset_reg_T32] sequence, making debugging of

jecxz L_jump_taken generated code more difficult. The
jopz reg.T32, mov b[ebp+offset_jump_info], 2 final ‘ret’ instruction is not generated
(reg.CS<<4)+reg.IP–24h jmp L_return while translating the jump

L_jump_taken: instruction; it is generated after the
mov edx, -24h entire block has been translated. This
add dx, [ebp+offset_reg_IP] ensures that any translated block will
movzx eax, w[ebp+offset_reg_CS] be able to return control to the caller,
shl eax, 4 even if the original code in that block
add edx, eax doesn’t end with a jump instruction.
mov [ebp+offset_crt_address], edx
mov b[ebp+offset_jump_info], 3
L_return: ret

The following format was used for IL instructions: <opcode source_operand_1, source_operand_2, destination_operand>. For
example, ‘add x, y, d’ means ‘d = x + y’. Loadflags and Saveflags are not separate IL instructions; they are encoded in the binary
form of affected IL instructions. In this particular implementation, the IL language accepts simple operands, such as registers and
constants, as well as more complex operands, like registers shifted with a constant, a sum of register, constant or shifted operands,
etc. It is possible to design the IL to only support simple operands, in which case each IL instruction would be simpler and faster
to generate, but more IL instructions would be needed, in average, to translate an original instruction.

DEFEATING POLYMORPHISM: BEYOND EMULATION STEPAN

48 VIRUS BULLETIN CONFERENCE OCTOBER 2005 ©2005 Virus Bulletin Ltd. No part of this reprint may be
reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

test method analyzed analyzed average total MIPS average
number instructions files instructions time P4@3GHz slowdown

x 1,000,000 per file x 1000 [seconds] rate*

1 emulation 63 6.3 317
DT 15 26 77

2 emulation 65 6.5 307
DT 11 38.3 52

3 emulation 68 6.3 317
DT 8 53.4 37

4 emulation 54 7.7 260
DT 7 60 33

* the average slowdown rate is defined as the time needed by emulation / DT to analyse a given test code divided by the time
needed by a real CPU to natively execute the same code. An average of 1.5 clock cycles per instruction was used for the purpose of
estimating the total time required for native execution of the files in the test sets. Actual execution time would be difficult to
measure given that infected files were used.

APPENDIX B
The following table shows comparative speed test results,
obtained by benchmarking a prototype implementation of the
dynamic translation method presented in this paper, versus the
emulator in the last version of RAV anti-virus engine. Within
each test, the DT prototype and the emulator analysed the
exact same instructions and scanned for malware with the
same signature set. The best time of three consecutive runs
was selected, for each test.

The files used for the first three tests were infected with
polymorphic file infectors; both the emulator and the DT
prototype had 100% detection rate on these test sets. The test
set for the last test consisted of 100 copies of an executable
file containing a nested decryptor loop – interior loop having
1,020 iterations, exterior loop having 256 iterations.

The benchmark results indicate that:

 • The DT method provides a significant speed
improvement over emulation, in all tests.

• In the case of emulation, speed performance is not
affected, in most cases, by the complexity of the analysed
files. The time required to emulate a given code sequence
is proportional with the type and number of instructions
emulated. An emulator takes little or even no advantage
of repeating code sequences (a slight improvement is
noticed for the last test set).

• The speed performance provided by the DT method,
relative to native execution, improves with the average
number of analysed instructions per file, as the
probability of finding repeating code sequences
increases. Thus, detection of heavily polymorphic
viruses, requiring millions of instructions to be analysed,
can be accomplished in a reasonable time by using
dynamic translation.

394

422

427

418

7070

2000

738

100

58

211

579

4180

